Part Number Hot Search : 
NTE975 HCS12 BAS16 F1007 D7716EB JANSR2N UMZ12N 2A120
Product Description
Full Text Search
 

To Download IRLSL4030 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  02/12/09 www.irf.com 1 hexfet   power mosfet benefits optimized for logic level drive  very low r ds(on) at 4.5v v gs  superior r*q at 4.5v v gs  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free applications  dc motor drive  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits s d g  97370 irls4030pbf IRLSL4030pbf gds gate drain source v dss 100v r ds ( on ) typ. 3.4m ? max. 4.3m ? i d 180a d 2 pak irls4030pbf to-262 IRLSL4030bf g d s g d s absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t c = 100c continuous drain current, v gs @ 10v a i dm pulsed drain current  p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj i ar avalanche current  a e ar repetitive avalanche energy  mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  CCC 0.40 c/w r ja junction-to-ambient (pcb mount)  CCC 40 300 max. 180130 730 305 see fig. 14, 15, 22a, 22b 370 21 -55 to + 175 16 2.5 downloaded from: http:///

2 www.irf.com    repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.05mh r g = 25 ? , i as = 110a, v gs =10v. part not recommended for use above this value .  i sd 110a, di/dt 1330a/s, v dd v (br)dss , t j 175c.  pulse width 400s; duty cycle 2%. s d g  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .  when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniquea refer to applocation note # an- 994 echniques refer to application note #an-994.     
      jc      static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 100 CCC CCC v ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC 0.10 CCC v/c r ds(on) static drain-to-source on-resistance CCC 3.4 4.3 m ? CCC 3.6 4.5 v gs(th) gate threshold voltage 1.0 CCC 2.5 v i dss drain-to-source leakage current CCC CCC 20 CCC CCC 250 i gss gate-to-source forward leakage CCC CCC 100 gate-to-source reverse leakage CCC CCC -100 r g(int) internal gate resistance CCC 2.1 CCC ? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 320 CCC CCC s q g total gate charge CCC 87 130 q gs gate-to-source charge CCC 27 CCC q gd gate-to-drain ("miller") charge CCC 45 CCC q sync total gate charge sync. (q g - q gd ) CCC 42 CCC t d(on) turn-on delay time CCC 74 CCC t r rise time CCC 330 CCC t d(off) turn-off delay time CCC 110 CCC t f fall time CCC 170 CCC c iss input capacitance CCC 11360 CCC c oss output capacitance CCC 670 CCC c rss reverse transfer capacitance CCC 290 CCC c oss eff. (er) effective output capacitance (energy related)
CCC 760 CCC c oss eff. (tr) effective output capacitance (time related) CCC 1140 CCC diode characteristics symbol parameter min. typ. max. units i s continuous source current (body diode) i sm pulsed source current (body diode) v sd diode forward voltage CCC CCC 1.3 v t rr reverse recovery time CCC 50 CCC t j = 25c v r = 85v, CCC 60 CCC t j = 125c i f = 110a q rr reverse recovery charge CCC 88 CCC t j = 25c di / dt = 100a / s  CCC 130 CCC t j = 125c i rrm reverse recovery current CCC 3.3 CCC a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 4.5v, i d = 92a  ns nc 180730 ana nc ns pf a CCC CCC CCC CCC i d = 110a r g = 2.7 ? v gs = 4.5v  v dd = 65v i d = 110a, v ds =0v, v gs = 4.5v t j = 25c, i s = 110a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250a reference to 25c, i d = 5ma v gs = 10v, i d = 110a  v ds = v gs , i d = 250a v ds = 100v, v gs = 0v v ds = 100v, v gs = 0v, t j = 125c mosfet symbol showing the v ds = 50v conditions v gs = 4.5v  v gs = 0v v ds = 50v ? = 1.0mhz v gs = 0v, v ds = 0v to 80v
v gs = 0v, v ds = 0v to 80v conditions v ds = 25v, i d = 110a i d = 110a v gs = 16v v gs = -16v downloaded from: http:///

www.irf.com 3 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 1 2 3 4 5 v gs , gate-to-source voltage (v) 1.0 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 50v 60s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.0 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 110a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 2 04 06 08 01 0 0 q g , total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v v ds = 50v i d = 110a 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 4.5v 3.5v 3.0v 2.7v bottom 2.5v 60s pulse width tj = 25c 2.5v 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 60s pulse width tj = 175c vgs top 15v 10v 8.0v 4.5v 3.5v 3.0v 2.7v bottom 2.5v downloaded from: http:///

4 www.irf.com fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 120 140 160 180 200 i d , d r a i n c u r r e n t ( a ) -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 90 95 100 105 110 115 120 125 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5ma -20 0 20 40 60 80 100 120 v ds, drain-to-source voltage (v) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 e n e r g y ( j ) 0 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 175c single pulse 100sec 1msec 10msec dc 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 200 400 600 800 1000 1200 1400 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 17a 40a bottom 110a downloaded from: http:///

www.irf.com 5 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far inexcess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b.4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15).t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.0477 0.0000710.1631 0.000881 0.1893 0.007457 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 350 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 110a downloaded from: http:///

6 www.irf.com  
      fig 16. threshold voltage vs. temperature  
 
     
      

 
    -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 0.0 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a i d = 1.0ma i d = 1.0a 0 200 400 600 800 1000 di f /dt (a/s) 80 160 240 320 400 480 560 640 720 800 q r r ( a ) i f = 73a v r = 85v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 80 160 240 320 400 480 560 640 720 800 880 q r r ( a ) i f = 110a v r = 85v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 0 5 10 15 20 25 30 35 i r r m ( a ) i f = 110a v r = 85v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 0 5 10 15 20 25 30 35 40 i r r m ( a ) i f = 73a v r = 85v t j = 25c t j = 125c downloaded from: http:///

www.irf.com 7 fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 21. 
      for n-channel hexfet   power mosfets 
   ?  
    ?      ?           p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period      !"#!$#  + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"   
     d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90%10% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %       $%  & + -     downloaded from: http:///

8 www.irf.com   
   
 
           
   
    
            !       
             
       
  downloaded from: http:///

www.irf.com 9 to-262 part marking information to-262 package outline dimensions are shown in millimeters (inches)    

  
    


     
    
 

       
    
 
 
  
     !
 
 
           
   
   "   
   ##  
       
  downloaded from: http:///

10 www.irf.com  
       
  data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 02/09   
  dimensions are shown in millimeters (inches) 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRLSL4030

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X